Innovation You Can Depend On™

■您可信赖的创新 ■ L'innovation

Sur Laquelle Vous Pouvez Compter

■ 期待に答える技術革新 ■

Innovación En La Que Usted Puede

Confiar ■ 신뢰할 수 있는 혁신

- Inovação Que Você Pode Confiar
- नवयुक्ति जिस पर आप निर्भर कर सकें

Technology Development for High Efficiency Clean Diesel Engines and a Pathway to 50% Thermal Efficiency

Donald Stanton
Research & Technology
August 5, 2009

Evolution of Heavy Duty **Diesel Engine Efficiency**

Class 8 Line Haul Application: Highway Cruise Condition

ISX Technology Roadmap for Efficiency Improvement

Black – Enabling Technology for HECC Program Phase 3

Variable Valve Actuation Fuel System
-High Injection Pressure
-Piston Bowl/Nozzle
-Multiple injections

Advanced LTC
-Enhanced PCCI
- Mixed Mode Combustion

Variable Intake Swirl

EGR Loop
- Lower Pressure Drop
- Alternative Cooling

Phase 3: 2008 - 2009

Controls
-Charge Air Manager
-MAF
-Closed Loop Combustion

Electrically Driven
Components

Turbo
Technology
-Electrically Assisted
-2-Stage

Aftertreatment

-DOC

-DPF

-SCR

-Sensors

Achieving a Wide Range of Engine Out NOx Capability

for In-Cylinder NOx Control

Fuel Consumption Comparison of the In-Cylinder vs SCR NOx Control Engine Architectures

Evolution of High Efficiency SCR

Does Not Include DEF Usage

Percent Improvement in SCR NOx Conversion Efficiency Relative to 2010 SCR System Capability

Evolution of High Efficiency SCR

Percent Improvement in SCR NOx Conversion Efficiency Relative to 2010 SCR System Capability

Potential Fuel Consumption Benefit of Higher SCR NOx Conversion Efficiency

^{*} Assumes DEF cost = diesel fuel cost/2

Potential Fuel Consumption Benefit of Higher SCR NOx Conversion Efficiency

^{*} Assumes DEF cost = diesel fuel cost/2

Technical Barriers with Possible Solutions

In-Cylinder NOx Control

- Vehicle heat rejection
 - Low temperature radiator configuration (multiple options considered)
- Power density limitations
 - Increased vehicle heat rejection capability
 - Cylinder pressure capability
- Robustness
 - Reduce charge flow and fuel flow variation
 - Control algorithms
 - Sensor technology
 - EGR cylinder to cylinder distribution
- Transient response
 - 2-stage turbo
 - Electrically assisted boost
 - CAC bypass

High NOx Conversion Efficiency SCR

- >97% conversion efficiency over relevant drive cycles
 - Conversion of urea to ammonia (eliminate urea derived deposits)
 - NOx selectivity of the ammonia slip catalyst
- System pressure drop
- Packaging
 - Unique arrangements defined
 - Reduce catalyst size via zone coating
 - New substrate material for smaller size
- Fuel efficient thermal management for transient emissions (FTP)
 - Turbomachinery
 - Injection strategy
 - EGR cooler by-pass
 - Compressor by-pass

Improved Customer Value

- Must significantly reduce the aftertreatment cost
 - Aggressive target should be a 50% reduction in price
- Diesel particulate filter size reduction with lower △P and combined SCR functionality
 - As SCR NOx conversion efficiency increases, PM emissions reduced drastically
 - DPF operating in passive regeneration mode
- Eliminate ammonia slip catalyst
- Greater than 50% reduction in precious metal loading of DOC
- Key is system integration with novel control strategies

Evolution of Heavy Duty **Diesel Engine Efficiency**

Class 8 Line Haul Application: Highway Cruise Condition

ORC Energy Recovery Potential

Nearly a 10% performance improvement is possible – though with high additional cost and system complexity

Future development must focus on the most promising and realistic potentials energy recovery sources -

Cost Reduction is a Key Area of Emphasis for the Cummins 2nd Generation ORC WHR System

